Refinement of Tribarium Silicate

By Ekiehart Tillmanns
Institut für Geowissenschaften, Postfach 3980, D-6500 Mainz, Federal Republic of Germany
and Hans-Peter Grosse
Dr C. Otto GmbH u. Comp., Postfach 9, D-4630 Bochum, Federal Republic of Germany

(Received 29 July 1977; accepted 5 October 1977)

Abstract

Ba}_{3} \mathrm{OSiO}_{4}\), tetragonal, $I 4 / \mathrm{mcm}$ with $a=$ 7.3023 (6), $c=11.2178$ (9) $\AA, Z=4, D_{X}=5.78 \mathrm{~g}$ cm^{-3}. The crystal structure was refined to $R=0.044$ for 526 reflections. $\mathrm{Ba}_{3} \mathrm{OSiO}_{4}$ is isostructural with $\mathrm{Cs}_{3} \mathrm{ClCoCl}_{4}$. The SiO_{4} tetrahedra are slightly distorted with $\mathrm{O}-\mathrm{Si}-\mathrm{O}$ angles of 110.6 and 107.2° respectively and $d(\mathrm{Si}-\mathrm{O})=1.639 \AA$. The two crystallographically different Ba atoms are coordinated by ten $[\mathrm{Ba}(1)]$ and eight O atoms $[\mathrm{Ba}(2)]$ with mean $\mathrm{Ba}-\mathrm{O}$ distances of 2.988 and $2.81 \AA$ respectively.

Introduction. $\mathrm{Ba}_{3} \mathrm{OSiO}_{4}$ has been reported to be isostructural with either $\mathrm{Sr}_{3} \mathrm{OSiO}_{4}$ or $\mathrm{Cs}_{3} \mathrm{ClCoCl}_{4}$ (Mansmann, 1965). Although the latter two compounds have similar structures there are distinct differences since they crystallize in different space groups and the coordinations of the large cations are different. Because of the difficulty in growing single crystals of $\mathrm{Ba}_{3} \mathrm{OSiO}_{4}$, earlier X-ray investigations were based on powder data and a detailed account of the crystal structure has not yet been reported. A single crystal of almost spherical shape with a diameter of about 0.16 mm , grown by solid-state reaction as described by Grosse (1976), was used to measure the cell parameters and intensities. The cell constants were refined by a least-squares fit to the angular settings of 30 reflections with $\theta>20^{\circ}$ measured on an automatic four-circle diffractometer (Mo $K \pi_{1}, \lambda=0.70926 \AA$). The systematic absences ($h k l$ with $h+k+l$ odd and 0 kl with l odd) indicate space groups $I 4 \mathrm{~cm}, I \overline{4} c 2$ and $I 4 / \mathrm{mcm}$. The results of the refinement indicate space group $14 / \mathrm{mcm}$.

The intensities of 3741 reflections with $\theta \leq 35^{\circ}$ were collected on the diffractometer with monochromatic Mo $K a$ radiation (graphite monochromator) and the $\omega-2 \theta$ step-scan mode with a scan range of $\Delta \omega=(0.5$ $+0.5 \tan \theta$). The diffracted-beam aperture was vertically constant (4 mm) and horizontally determined by $(4+2 \tan \theta) \mathrm{mm}$. The scanning speed was adjusted to obtain 5000 counts for each reflection with a maximum counting time of 180 s . The background was measured for one-quarter of the scan time on both sides of the peak.

After correction for absorption $\mid \mu($ Mo $K(t)=202.4$ cm^{-1}, transmission factors between $0 \cdot 12$ and $0 \cdot 15$) the reduction and averaging of the intensity data resulted in 526 unique structure factors, 79 of which were considered to be of zero intensity $\left(I<2 \sigma_{t}\right)$.

The structure was refined by full-matrix least-squares calculations, starting from the positional parameters of $\mathrm{Cs}_{3} \mathrm{ClCoCl}_{4}$ given by Figgis, Gerloch \& Mason (1964). Atomic scattering factors were taken from International Tables for X-ray Crystallography (1968). The observed structure factors were weighted according to $w=1 / \sigma^{2}(F)$. The computer programs used in the

Fig. 1. $\mathrm{Ba}_{3} \mathrm{OSiO}_{4}$, projection of the crystal structure along $|001|$. Large circles are Ba atoms; the heights of the atoms are given as fractional coordinates.

Table 1. $\mathrm{Ba}_{3} \mathrm{OSiO}_{4}$, fractional atomic coordinates $\left(\times 10^{4}\right)$ with estimated standard deviations

	x	y	z
$\mathrm{Ba}(1)$	0	0	$\frac{1}{4}$
$\mathrm{Ba}(2)$	$1832(1)$	6832	0
Si	0	$\frac{1}{2}$	$\frac{1}{2}$
$\mathrm{O}(1)$	0	0	0
$\mathrm{O}(2)$	$1278(6)$	6278	$3367(5)$

course of the work are the same as those given by Tillmanns \& Gebert (1973).

After an extinction correction (Zachariasen, 1963; C $=3.5 \times 10^{-5}$) the final weighted residual $R_{2}=$ $\left[\Sigma w(\Delta F)^{2} / \Sigma w F_{o}^{2}\right]^{1 / 2}$ was 0.039 ; the corresponding unweighted R_{1} was 0.028 for the observed reflections and 0.044 including the 79 unobserved reflections with $F_{o}=0$. The greatest shift in the last cycle of refinement was 0.02σ for β_{12} of $\mathrm{O}(2)$, the largest maxima or minima in the final difference synthesis were ± 3 e \AA^{-3} around the Ba atoms. The refined positional parameters are given in Table 1.*

Discussion. In his work on the crystal structures of $\mathrm{Ba}_{3} \mathrm{MO}_{5}$ compounds with $M=\mathrm{Ti}, \mathrm{V}, \mathrm{Cr}, \mathrm{Mn}, \mathrm{Fe}, \mathrm{Co}$, Si and Ge Mansmann (1965) could not decide whether $\mathrm{Ba}_{3} \mathrm{OSiO}_{4}$ was isostructural with $\mathrm{Cs}_{3} \mathrm{ClCoCl}_{4}$ (Figgis, Gerloch \& Mason, 1964) or with $\mathrm{Sr}_{3} \mathrm{OSiO}_{4}$ (Glasser \& Glasser, 1965). The major difference between the two structures is the relative position of the SiO_{4} tetrahedra which are superimposed in the \mathbf{c} direction at a distance of $\frac{1}{2} c$. In $\mathrm{Ba}_{3} \mathrm{OSiO}_{4}$ the tetrahedra are strictly parallel with their upper and lower edges parallel to the face diagonal of the (001) plane (Fig. 1); in $\mathrm{Sr}_{3} \mathrm{OSiO}_{4}$ they are rotated with respect to each other through an angle of 33°, which leads to the lower symmetry of space group $P 4 / \mathrm{ncc}$ instead of $I 4 / \mathrm{mcm}$. The different position of the tetrahedral $\mathbf{O (2)}$ atom also causes a different

[^0]

Fig. 2. Coordination polyhedron around $\mathrm{Ba}(1)$.
coordination of the large Ba and Sr cations. While in $\mathrm{Sr}_{3} \mathrm{OSiO}_{4} \mathrm{Sr}(1)$ and $\mathrm{Sr}(2)$ have distorted octahedral coordinations with four and two O atoms, respectively, at distances greater by 20% than the average of the six shorter ones, the coordination of Ba atoms in $\mathrm{Ba}_{3} \mathrm{OSiO}_{4}$ is clearly tenfold for $\mathrm{Ba}(1)$ and eightfold for $\mathrm{Ba}(2)$.

The $\mathrm{Ba}(1) \mathrm{O}_{10}$ coordination polyhedron is a quadratic antiprism with two additional O atoms above and below the base faces (Fig. 2). The irregular eightcoordination around $\mathrm{Ba}(2)$ is shown in Fig. 3.

Table 2 lists interatomic distances and angles. The SiO_{4} tetrahedron is only slightly distorted with four $\mathrm{Si}-\mathrm{O}$ distances of $1.639 \AA$ and $\mathrm{O}-\mathrm{Si}-\mathrm{O}$ angles of 110.6 and $107 \cdot 2^{\circ}$. All six edges are shared with the coordination polyhedra around Ba . The range of $\mathrm{Ba}-\mathrm{O}$ distances is rather low with $2.805-3.034 \AA$ for the $\mathrm{Ba}(1) \mathrm{O}_{10}$ polyhedron (mean value: $2.988 \AA$) and $2.673-2.945 \AA$ for $\mathrm{Ba}(2)$ (mean value: $2.810 \AA$).

The average $\mathrm{Ba}-\mathrm{O}$ distance of $2.988 \AA$ in the $\mathrm{Ba}(1) \mathrm{O}_{10}$ coordination polyhedron is large. Fischer (1972) gives a much smaller average distance of $2.87 \AA$ for compounds containing Ba in 10 -coordination and even for 11 or 12 -coordinated Ba ; for example, in a number of barium titanates (Tillmanns, 1976) smaller average $\mathrm{Ba}-\mathrm{O}$ distances have been found (2.88-2.97 A).

The size of the coordination polyhedron seems to be responsible for the difference in the crystal structures of $\mathrm{Ba}_{3} \mathrm{OSiO}_{4}$ and $\mathrm{Sr}_{3} \mathrm{OSiO}_{4}$. The rotation of SiO_{4} tetra-

Fig. 3. $\mathrm{Ba}_{3} \mathrm{OSiO}_{4}$, projection of the crystal structure along [100]. Large circles are Ba atoms; the heights of the atoms are given as fractional coordinates.
hedra with respect to each other in $\mathrm{Sr}_{3} \mathrm{OSiO}_{4}$ causes a lower coordination number of six for $\operatorname{Sr}(1)$ with an average $\mathrm{Sr}-\mathrm{O}$ distance of $2.600 \AA$ (Glasser \& Glasser, 1965). Without rotation of the tetrahedra, $\operatorname{Sr}(1)$ would be ten-coordinated with a large average distance of $2.84 \AA$, an arrangement which is electrostatically less

Table 2. $\mathrm{Ba}_{3} \mathrm{OSiO}_{4}$, interatomic distances (\AA) and angles $\left({ }^{\circ}\right)$

Standard deviations are approximately $0.004 \AA$ for $\mathrm{Ba}-\mathrm{O}$ and $\mathrm{Si}-\mathrm{O}$ distances and $0.006 \AA$ for $\mathrm{O}-\mathrm{O}$ distances. Bond angles have a standard deviation of 0.2°.

Coordination around $\mathrm{Ba}(1)$

$\mathrm{Ba}(1)-\mathrm{O}(1)$		$2.805(2 \times)$
$-\mathrm{O}(2)$		$3.034(8 \times)$
$\mathrm{O}(1)-\mathrm{O}(2)$	108.7	$4.746(8 \times)$
$\mathrm{O}(1)-\mathrm{O}(2)$	71.3	$3.408(8 \times)$
$\mathrm{O}(2)-\mathrm{O}(2)$	84.1	$4.064(8 \times)$
$\mathrm{O}(2)-\mathrm{O}(2)$	52.8	$2.696(4 \times)$
$\mathrm{O}(2)-\mathrm{O}(2)$	144.2	$5.773(4 \times)$
$\mathrm{O}(2)-\mathrm{O}(2)$	63.4	$3.187(4 \times)$
$\mathrm{O}(2)-\mathrm{O}(2)$	130.8	$5.518(4 \times)$
$\mathrm{O}(2)-\mathrm{O}(2)$	142.6	$5.747(4 \times)$
$\mathrm{O}(1)-\mathrm{O}(1)$	180.0	5.609

Coordination around $\mathrm{Ba}(2)$

$\mathrm{Ba}(2)-\mathrm{O}(1)$		$2.673(2 \times)$
$-\mathrm{O}(2)$		$2.677(2 \times)$
$-\mathrm{O}(2)$		$2.945(4 \times)$
$\mathrm{O}(1)-\mathrm{O}(1)$	150.1	5.164
$\mathrm{O}(1)-\mathrm{O}(2)$	79.1	$3.408(4 \times)$
$\mathrm{O}(1)-\mathrm{O}(2)$	74.5	$3.408(4 \times)$
$\mathrm{O}(1)-\mathrm{O}(2)$	126.8	$5.024(4 \times)$
$\mathrm{O}(2)-\mathrm{O}(2)$	86.4	3.664
$\mathrm{O}(2)-\mathrm{O}(2)$	92.5	$4.064(4 \times)$
$\mathrm{O}(2)-\mathrm{O}(2)$	153.4	$5.472(4 \times)$
$\mathrm{O}(2)-\mathrm{O}(2)$	100.1	$4.516(2 \times)$
$\mathrm{O}(2)-\mathrm{O}(2)$	53.2	$2.640(2 \times)$
$\mathrm{O}(2)-\mathrm{O}(2)$	76.9	$3.664(2 \times)$

Coordination around Si

$\mathrm{Si}-\mathrm{O}(2)$		$1.639(4 \times)$
$\mathrm{O}(2)-\mathrm{O}(2)$	110.6	$2.696(4 \times)$
$\mathrm{O}(2)-\mathrm{O}(2)$	107.2	$2.640(2 \times)$

favourable. A similar situation has been found in the crystal structure of $\mathrm{Ba}_{2} \mathrm{SiO}_{4}$ (Grosse \& Tillmanns, 1974). Average $\mathrm{Ba}-\mathrm{O}$ distances are $2.983 \AA$ for the $\mathrm{Ba}(1) \mathrm{O}_{10}$ polyhedron and $2.824 \AA$ for the ninecoordinated $\mathrm{Ba}(2)$ atom. A detailed account of the crystal structure of $\mathrm{Sr}_{2} \mathrm{SiO}_{4}$ has not been given so far, but Pieper, Eysel \& Hahn (1972) report that $\mathrm{Sr}_{2} \mathrm{SiO}_{4}$ has two crystalline modifications: $a^{\prime}-\mathrm{Sr}_{2} \mathrm{SiO}_{4}$ above approximately $85^{\circ} \mathrm{C}$ is probably isostructural with $\mathrm{Ba}_{2} \mathrm{SiO}_{4}, \beta-\mathrm{Sr}_{2} \mathrm{SiO}_{4}$ below $85^{\circ} \mathrm{C}$ is isostructural with β $\mathrm{Ca}_{2} \mathrm{SiO}_{4}$. The main difference between the two structures is that in $\beta-\mathrm{Ca}_{2} \mathrm{SiO}_{4}$ (Cruickshank, 1964) SiO_{4} tetrahedra are rotated so that the Ca atom which corresponds to $\mathrm{Ba}(1)$ in $\mathrm{Ba}_{2} \mathrm{SiO}_{4}$ is only six-coordinated with the other four O atoms at distances greater by 20% than the average of the six short $\mathrm{Ba}-\mathrm{O}$ bonds.

Financial support by the Deutsche Forschungsgemeinschaft is gratefully acknowledged, drawings were kindly made by Mrs J. Grosse, photographs by Mrs U. Kobler; computing time was provided by the Computing Centre of the University of Mainz.

References

Cruickshank, D. W. J. (1964). Acta Cryst. 17, 685-686.
Figgis, B. N., Gerloch, M. \& Mason, R. (1964). Acta Cryst. 17, 506-508.
Fischer, K. (1972). Barium-Crystal Chemistry, Handbook of Geochemistry, Vol. II, p. 3. Heidelberg: Springer.
Glasser, L. S. D. \& Glasser, F. P. (1965). Acta Cryst. 18, 453-454.
Grosse, H. P. (1976). Kristallchemische Untersuchungen im System $\mathrm{BaO}-\mathrm{SiO}_{2}$. PhD Thesis, Ruhr-Univ. Bochum.
Grosse, H. P. \& Tillmanns, E. (1974). Cryst. Struct. Coтmии. 3, 599-602.
International Tables for X-ray Crystallography (1968). Vol. III. Birmingham: Kynoch Press.

Mansmann, M. (1965). Z. Anorg. Allg. Chem. 339, 52-56.
Pieper, G., Eysel, W. \& Hahn, Th. (1972). J. Am. Ceram. Soc. 55, 619-622.
Tillmanns, E. (1976). Coll. Abstr. 3rd Eur. Crystallogr. Meet., pp. 80-81.
Tillmanns, E. \& Gebert, W. (1973). Acta Cryst. B29, 2789-2794.
Zachariasen, W. H. (1963). Acta Cryst. 16, 1139-1144.

[^0]: * Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 33074 (5 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CHI INZ, England.

